Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification—A Review

نویسندگان

  • Shariq Najeeb
  • Zohaib Khurshid
  • Jukka Pekka Matinlinna
  • Fahad Siddiqui
  • Mohammad Zakaria Nassani
  • Kusai Baroudi
چکیده

Purpose. The aim of this review is to summarize and evaluate the relevant literature regarding the different ways how polyetheretherketone (PEEK) can be modified to overcome its limited bioactivity, and thereby making it suitable as a dental implant material. Study Selection. An electronic literature search was conducted via the PubMed and Google Scholar databases using the keywords "PEEK dental implants," "nano," "osseointegration," "surface treatment," and "modification." A total of 16 in vivo and in vitro studies were found suitable to be included in this review. Results. There are many viable methods to increase the bioactivity of PEEK. Most methods focus on increasing the surface roughness, increasing the hydrophilicity and coating osseoconductive materials. Conclusion. There are many ways in which PEEK can be modified at a nanometer level to overcome its limited bioactivity. Melt-blending with bioactive nanoparticles can be used to produce bioactive nanocomposites, while spin-coating, gas plasma etching, electron beam, and plasma-ion immersion implantation can be used to modify the surface of PEEK implants in order to make them more bioactive. However, more animal studies are needed before these implants can be deemed suitable to be used as dental implants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Current Strategies to Improve the Bioactivity of PEEK

The synthetic thermoplastic polymer polyetheretherketone (PEEK) is becoming a popular component of clinical orthopedic and spinal applications, but its practical use suffers from several limitations. Although PEEK is biocompatible, chemically stable, radiolucent and has an elastic modulus similar to that of normal human bone, it is biologically inert, preventing good integration with adjacent b...

متن کامل

The Study of PEEK Composites as the Dental Implant Materials

Polyetheretherketone (PEEK) is a kind of synthetic thermoplastic polymer, because of its good biological compatibility, chemical stability and radiolucency, it has been widely used in the field of medicine. Compared with the titanium, the elastic modulus of PEEK is closer to human cortical bone, PEEK could be a viable alternative material for dental implants. Nevertheless the inherent bio-inert...

متن کامل

Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies

BACKGROUND Compared with titanium (Ti) and other metal implant materials, poly(ether-ether ketone) (PEEK) shows outstanding biomechanical properties. A number of studies have also reported attractive bioactivity for nano-TiO(2) (n-TiO(2)). METHODS In this study, n-TiO(2)/PEEK nanocomposites were prepared, taking advantage of the unique properties of both PEEK polymer and n-TiO(2). The in vitr...

متن کامل

Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite composite

As United States Food and Drug Administration-approved implantable material, carbon fiber-reinforced polyetheretherketone (CFRPEEK) possesses an adjustable elastic modulus similar to cortical bone and is a prime candidate to replace surgical metallic implants. The bioinertness and inferior osteogenic properties of CFRPEEK, however, limit its clinical application as orthopedic/dental implants. I...

متن کامل

Osseointegration of nanohydroxyapatite- or nano-calcium silicate-incorporated polyetheretherketone bioactive composites in vivo

Polyetheretherketone (PEEK) exhibits appropriate biomechanical strength as well as good biocompatibility and stable chemical properties but lacks bioactivity and cannot achieve highly efficient osseointegration after implantation. Incorporating bioceramics into the PEEK matrix is a feasible approach for improving its bioactivity. In this study, nanohydroxyapatite (n-HA) and nano-calcium silicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015